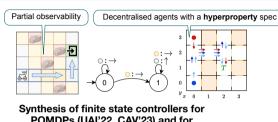
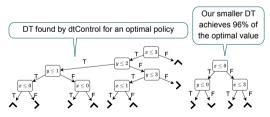
Controller Synthesis under Model Uncertainty and Structural Constraints

Milan Češka

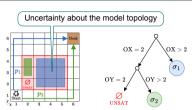
Applications & Recent results



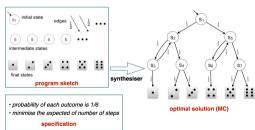
POMDPs (UAI'22, CAV'23) and for decentralised planning (AAMAS'25)



Synthesis of small almost optimal decision trees for MDPs (CAV'25)

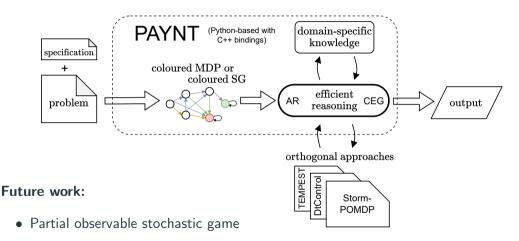


Synthesis of policy trees for multipleenvironment MDPs (ATVA'24)



Synthesis of finite-state probabilisitic programs from sketches (TACAS'21, JAIR'25)

Available via our synthesis framework PAYNT [CAV'21, JAIR'25]



- Roboust MDPs and POMDPs
- Robust monitoring/shielding for safe RL

Roman Andriushchenko

Synthesis, Robustness

Filip Macák

POMDPs, POSGs

David Hudák

Safe RL

Cooperation with Sebastian Junges, Joost-Pieter Katoen, and Nils Jansen

Policies Grow on Trees: Model Checking Families of MDPs

Roman Andriushchenko Milan Češka Sebastian Junges Filip Macák

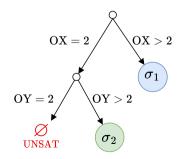
Distinguished Paper at ATVA'24

Motivation

Previous work: exploring families of discrete-time Markov chains (DTMCs)

Increased interest in robustness in nondeterministic models

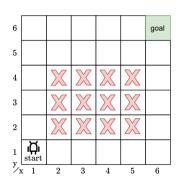
- obtain strategy which works well in multiple environments
- what if we don't know the exact model?



Family of MDPs

Family $\{M_i\}_{i\in\mathcal{I}}$ of MDPs = MDP with parameters

- parameters affect MDP topology
- $i \in \mathcal{I}$ is a parameter assignment, $|\mathcal{I}| < \infty$
- choice of parameter assignment $i \in \mathcal{I}$ represents uncontrollable nondeterminism (adversary, environment)
- choice of action $\alpha \in Act$ represents controllable nondeterminism



• parameters: $OX = \{2, 3, 4, 5\}$ and $OY = \{2, 3, 4\}$

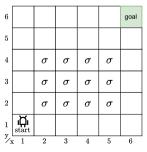
Robustness problem

input: family $\{M_i\}_{i\in\mathcal{I}}$ of MDPs

input: PCTL reachability property $P(F T) \bowtie \lambda$

output: robust controller σ s.t. $\forall i \in \mathcal{I}$: $P(M_i^{\sigma} \models F T) \bowtie \lambda$

- requires non-memoryless controllers
- related to solving POMDPs

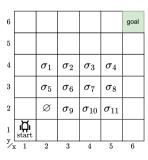


Problem statement

input: family $\{M_i\}_{i\in\mathcal{I}}$ of MDPs

input: PCTL reachability property $P(F T) \bowtie \lambda$

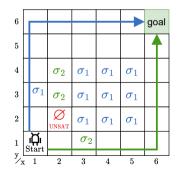
output: for each parameter assignment $i \in \mathcal{I}$ a controller σ_i s.t. $P(M_i^{\sigma_i} \models F T) \bowtie \lambda$ (if such σ_i exists)

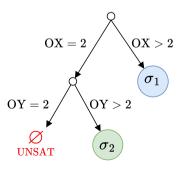


Problem statement

Additional requirement: produce a decision tree of controllers

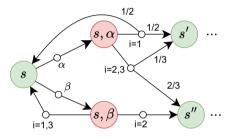
- nodes of the tree reason about a single parameter
- leaves of the tree (describing sub-families) contain controllers (or ∅)
- space-efficient, fast lookup, more understandable for engineers





Stochastic game abstraction

Player 1 picks an action, Player 2 picks a parameter assignment



the above is an over-approximation since Player 2 is too powerful:

- Player 2 can pick parameter assignments inconsistently
 - consistent abstraction would mimic the all-in-one abstraction
- Player 2 acts second
 - this order avoids the abstraction blow-up

Robust policy heuristic

- assume a family $\mathcal M$ of MDPs and a specification $P(\operatorname{F} T) \geq 0.9$
- ullet construct game abstraction $\mathcal{G}(\mathcal{M})$
- the following is a sufficient (but not necessary) condition for σ_1 to be a robust controller for \mathcal{M} :

$$\max_{\sigma_1} \min_{\sigma_2} P(\mathcal{G}(\mathcal{M})^{\sigma_1 \sigma_2} \models F \ T) \ge 0.9$$

• if the above condition does *not* hold and σ_2 is consistent in its parameter assignment, then this assignment is unsatisfiable

Proving unsatisfiability heuristic

- ullet assume a family ${\cal M}$ of MDPs and a specification $P({
 m F}|T) \geq 0.9$
- ullet the following is a sufficient (but not necessary) condition for no MDP in ${\mathcal M}$ being satisfiable:

$$\max_{\sigma_1} \max_{\sigma_2} P(\mathcal{G}(\mathcal{M})^{\sigma_1 \sigma_2} \models F T) < 0.9$$

- such "game" abstraction is simply an MDP
- if the above condition does *not* hold and σ_2 is consistent in its parameter assignment, then this assignment is satisfiable

Abstraction refinement

Abstraction refinement step: if neither of the tests was successful, we split family \mathcal{M} into smaller subfamilies based on the controller (σ_1, σ_2) for the game abstraction $\mathcal{G}(\mathcal{M})$

- if σ_2 is not consistent i.e. in parameter X, we split wrt. X to disallow such an inconsistency in the subfamilies
- if σ_2 is consistent, representing some satisfiable assignment i, we try to separate i (and other assignments in which σ_2 is consistent) into a smaller subfamily

Proposed Algorithm

8:

9:

Algorithm 1 Policy tree synthesis

return LeafNode(\mathcal{M}, \varnothing)

 $\mathcal{M}', \mathcal{M}'' \leftarrow \mathsf{split}(\mathcal{M})$

```
Input: family \mathcal{M} = \{M_i\}_{i \in \mathcal{I}} of MDPs, PCTL property \varphi

Output: policy tree for \mathcal{M} wrt. \varphi

1: function BUILDTREE(\mathcal{M}, \varphi)

2: \sigma \leftarrow try to find a robust controller for \mathcal{M} wrt. \varphi

3: if succeeded then

4: return LeafNode(\mathcal{M}, \sigma)

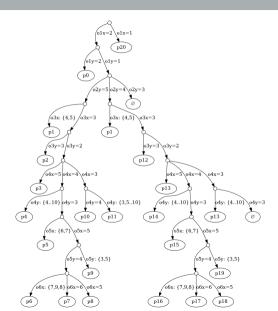
5: try to prove that no M_i \in \mathcal{M} can satisfy \varphi

6: if succeeded then
```

Main idea: given a family of MDPs, try to find a robust controller or try to prove that no satisfying MDP exists, split the family if a conclusive result was not obtained $_{11/14}$

return InnerNode(\mathcal{M} , BuildTree(\mathcal{M}', φ), BuildTree(\mathcal{M}'', φ))

Decision tree example



Experimental results

model	model info			our approach		speedup wrt.	
	$ S_{\mathcal{M}} $	$ \mathcal{M} $	SAT %	P/SAT %	time	1-by-1	all-in-1
dodge-2	2e5	3e4	100	0.1	122	8	1.1
dodge-3	2e5	9e7	100	< 0.01	1445	†1764	MO
dpm-10-b	9e3	1e5	22	0.02	74	21	TO
obs-8-6	5e2	5e4	90	0.6	6	4	1.5
obs-10-6	8e2	3e6	98	< 0.01	5	412	MO
obs-10-9	1e3	4e8	100	< 0.01	259	†1661	MO
rov-1000	2e4	4e6	99	0.03	1402	†65	TO
uav-work	9e3	2e6	99	< 0.01	113	55	ТО
virus	2e3	7e4	83	0.9	50	8.0	ТО
rocks-6-4	3e3	7e3	100	34	102	0.2	0.1

Conclusion

Main contributions:

- 1. We contribute a scalable approach to policy synthesis for sets of MDPs
- 2. The key technique is a game-based abstraction with abstraction refinement
- 3. The resulting algorithm finds policies for millions of MDPs and provides a compact representation of them

Future work:

- Investigate the robustness problem further
- Incorporate the compact representation of policies (e.g. as decision trees)
- Extend the framework to families of POMDPs

Thank you for attention!