Improving Synthesis of Finite State Controllers for POMDPs Using Belief Space Approximation

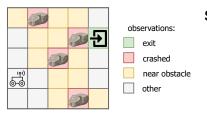
Ing. Filip Macák (imacak@fit.vutbr.cz)

Supervisor: Assoc. Prof. Milan Češka

Problem Formulation

Partially-observable Markov decision processes (POMDPs)

- prominent model for sequential decision-making under uncertainty and limited observability
- observations states with the same observation are indistinguishable
- observation-based policies are required



Specification:

- minimise the number of steps to reach the exit
- keep the probability of crashing below 1%

Many practical applications:

- planning of autonomous agents and robotics
- games with imperfect information (e.g texas holdem)
- medical treatment strategies (e.g heart disease)

Problem Formulation

Find the optimal policy for the given infinite-horizon specifications

- no discounting much harder than finite-horizon problems
- important for long-term planning and sparse-rewards problems
- in general undecidable policy may require infinite memory

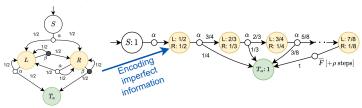
We aim at compact, verifiable and easy-to-execute strategies

• finite-state controller (FSC) based on Mealy machines

Anytime algorithm: in the given time, find the best FSC

Belief-based Methods

Belief - probability distribution over the states of a POMDP



Construct and analyse the reachable belief space

- it might be huge or even infinite
- various approximations of the unexplored belief space, namely, cut-offs¹ and point-based

Limitations:

- cut-offs (implemented in the tool Storm) are not sufficient
- point-based methods, notably SARSOP², perform poorly for long-term planning

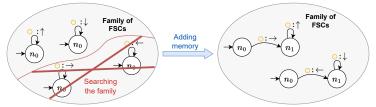
¹A. Bork et al. Under-approximating expected total rewards in POMDPs. In TACAS'22.

²H. Kurniawati et al. SARSOP: Efficient point-based POMDP planning by approximating optimally reachable belief spaces. In Robotics: Science and Systems 2008.

Inductive Synthesis of FSCs

Symbolic representation and exploration of families of candidate FSCs

- fully-observable abstraction and counter-examples steer the exploration
- iterative expansion of the family by adding memory nodes
- implemented in the tool PAYNT³ (developed at BUT FIT)



Limitations:

- the family size grows exponentially with the memory
- if a lot of memory is needed or the POMDP is too large, exploration becomes computationally intractable

³R. Andriushchenko et al. Inductive synthesis of finite-state controllers for POMDPs. In UAI'22.

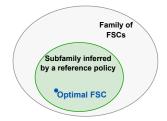
Proposed improvements

Two novel ideas

Using FSCs as cut-offs to obtain a better approximation of the unexplored parts of the belief space

Execute FSC

Already very non-optimal FSCs improve bounds provided by existing cut-offs techniques Using reference policies from belief-space exploration to guide the inductive synthesis

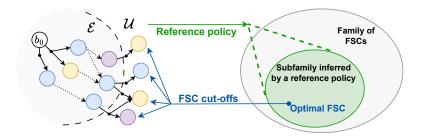


Already very shallow exploration of the belief space is useful for guiding family exploration

SAYNT - novel symbiotic synthesis algorithm

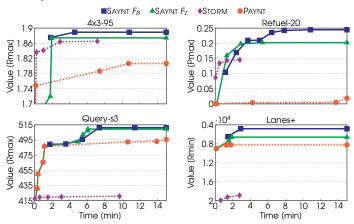
SAYNT is an iterative anytime synthesis algorithm

- closed-loop integration of the inductive synthesis and the belief-space exploration
 - PAYNT provides cut-off FSCs for Storm,
 - Storm provides reference policies for PAYNT and suggest where to add the memory
- in each iteration two FSCs $F_{\mathcal{I}}$ and $F_{\mathcal{B}}$ are obtained



Experimental Evaluation

Comparing SAYNT and state-of-the-art tools Storm¹ and PAYNT³



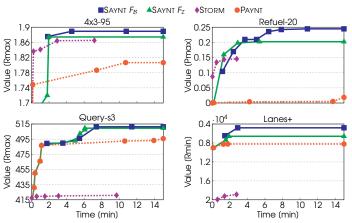
SAYNT steadily outperforms both baselines on a wide range of benchmarks from AI and formal verification communities

¹A. Bork et al. Under-approximating expected total rewards in POMDPs. In TACAS'22.

³R. Andriushchenko et al. Inductive synthesis of finite-state controllers for POMDPs. In UAI'22.

Experimental Evaluation

Comparing SAYNT and state-of-the-art tools Storm¹ and PAYNT³



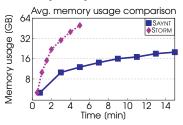
The quality of improvements grows with the complexity of POMDPs and reaches up to 40%

¹A. Bork et al. Under-approximating expected total rewards in POMDPs. In TACAS'22.

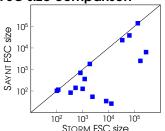
³R. Andriushchenko et al. Inductive synthesis of finite-state controllers for POMDPs. In UAI'22.

Experimental Evaluation

Memory footprint



- SAYNT significantly reduces memory usage compared to Storm
- This allows an efficient belief-space exploration in larger POMDPs



 SAYNT produces more compact FSCs compared to Storm while achieving better values

Publication

Conference paper based on this work has been accepted to CAV'23 (A* conference)

I would like to thank all the co-authors:

Milan Češka (BUT FIT)

Roman Andriushchenko (BUT FIT)

Alexander Bork (RWTH Aachen University)

Sebastian Junges (Radboud University)

Joost-Pieter Katoen (RWTH Aachen University)

My key contributions:

- Formulation of research ideas, namely improvements to the inductive synthesis and the idea of a symbiotic approach
- Design and implementation of the enhanced inductive synthesis and of the symbiotic loop
- Implementation of the export of belief policies
- Experimental evaluation and artifact preparation
- Writing of the paper

Conclusions

Novel algorithm for POMDPs and infinite-horizon specifications

- symbiotically integrates the belief-space exploration and the inductive synthesis
- outperforms state-of-the-art methods on a wide range of benchmarks

Future research:

- discounted vs. undiscounted specifications
- extension to partially-observable stochastic games
- combination with RL-based approaches